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CRITERION EQUATIONS OF THE HEAT AND MASS TRANSFER 
AT THE SURFACE OF DROPLETS AND VAPOUR BUBBLES 

Th ermal Engineering Laboratory, Institute for Electrical Power Research (VEIKI), Budapest, Hungary 

Abs :&act-For the general description of the heat and mass transfer at the interface of two-phase 
met iia a system of similarity criteria was elaborated which consists of the Euler, Froude, Galilei, Jakob, 
Nu: sselt, P&cl&t, Reynolds, Stanton and Weber numbers adapted for droplets and vapour bubbles. In 
ord er to make possible taking into account the deviations caused by the dispersed state of the particles 

also the notion of capillary latent heat was defined. 
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NOMENCLATURE 

area of phase interface; 
thermal diffusivity, = I/(c,p); 
isobaric specific heat; 
internal energy; 
enthalpy; 
specific enthalpy; 
pressure; 
saturation pressure; 
heat flux density; 
radius; 
latent heat of vaporization; 
temperature; 
time; 
volume; 
heat-transfer coefficient; 
thermal conductivity; 
kinematic viscosity; 
mass density; 
surface tension; 
radial velocity; 
radial acceleration; 
pressure difference; 
temperature difference; 
refers to liquid phase; 
refers to vapour phase; 
refers to disperse state. 

The criterion equation of heat and mass transfer 

for droplets and bubbles will be deduced from Newton’s 

basic equation of heat transfer per unit area 

q=ctAT (1) 

which is a relation of universal validity. 
The special form of the basic equation (1) adequate 

for vapour bubbles in liquid was established by 
BoSnjakoviC, based on the theory that the temperature 
difference which maintains the radial motion of the 
phase interface is localized in a thin thermal boundary 
layer surrounding the bubble [l-3]. For the bubble 
growth in superheated liquid the heat balance at the 
phase interface 

NAT = rp dRjdt (2) 

was obtained. 
The size variation during the growth and collapse 

of vapour bubbles may be described in the same way, 
since both of these processes are of identical nature 
but of reverse direction. Therefore the equation (2) is 
valid not only for the growth of bubbles in superheated 
liquid, but also for both their growth and collapse in 
subcooled liquid [2,4]. 

It was established by Plesset and Zwick that the 
temperature and pressure in vapour bubble surrounded 
by superheated liquid is decreased necessarily when it is 
growing, because of the heat input and evaporation 

THE BEHAVIOUR of droplets and bubbles has been at the bubble boundary [5]. One has no reason to 
repeatedly investigated regarding both theoretical and suppose that the analogue of this phenomenon does 
experimental aspects, since direct contact between not proceed under adequate conditions when the 
vapour and liquid often occurs in industrial processes. bubble is collapsing. Consequently, it is to be expected 
Systematizing and generalizing experimental results that in case of bubble collapse in subcooled liquid 
can be carried out in the most appropriate way by the temperature and pressure within the bubble are 
means of similarity criteria. increased owing to the heat output and condensation 
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at the bubble boundary. This supposition is in keeping 
with the results yielded by Akiyama’s theoretical and 
experimental investigation [6]. 

The heat input of evaporation and the heat output 
of condensation, however, depend on the rate of size 

variation, so the heat-transfer problem is coupled with 

mass transfer and dynamic problems. 

In spite of additional effects. it can undoubtedly be 
established that the driving force of the process in 
question is all the time the temperature difference 

between phases [2,5,7], on the one hand, and the 

interdependence of temperature difference and pressure 
difference is determined by the ClausiussClapeyron 
equation [&lo], on the other hand. 

It follows from the foregoing that in case of droplets 
the heat balance at the phase interface has the same 
form as the equation (2) which was originally defined 

for bubbles, but it is to be noted that the latent heat 

is of capillary character in both cases, consequently, 
it differs from the usual one, as will be seen in the sequel. 

Moreover, it is known that for the internal energy 
of the surrounded particle belonging to the disperse 

phase 

It is known that according to Laplace’s theorem 

about capillary superpressure the pressure difference 
between the droplet and surrounding vapour, or be- 
tween the bubble and surrounding liquid, respectively, 

is defined by 

is obtained, as deduced by Keenan [l I], Grigull, Bach, 
and Straub [12--141, as well as, by Novikov and 
Voskresenskiy [15]. Consequently, the enthalpy of a 
single disperse particle can be defined by 

H, = E,+p,V. (7) 

where the pressure p. is higher or lower by Ap, (5) 

than the saturation pressure corresponding to its own 
temperature, what results in what was transformed by Kelvin, considering that the 

vapour pressure deviates from the saturation pressure 

corresponding to its own temperature, by 

r, 

Ap” = ps -p” = f ?! L 
R p’-p’i’ 

where the upper sign (-) relates to the droplet, and 

the lower one (+) to the bubble [3]. 

This means that the difference between saturation 

pressure and bubble pressure is immediately given by 
the equation (4), but for determining the difference 

between saturation pressure and droplet pressure the 
equation (4) should be completed by the pressure 
difference between phases Ap (3). Based on this assump- 

tion, the deviation of the pressure within disperse 
particles of both kinds from the saturation pressure 
can be defined by 

where the signs are to be used as above, and the 
density p in numerator always belongs to the disperse 
phase. 

Since between the phases there is a temperature 
difference, the droplet or bubble, respectively, has a 
radially moving boundary, in consequence of what 
dynamic and thermal effects are produced which are 
not shown by the equations (3).-(5), therefore these 
relations may be regarded as estimations reflecting the 
primary effect of the surface energy. 

As can be seen, a perceptible modification of the 

latent heat is caused by sizes of capillary magnitude, 
therefore the notion defined by the equation (10) may 
be regarded as capillary lutent bent, opposite to the 
usual one which is of macroscopic character. 

The phenomena in question can be described also by 

means of similarity criteria, as follows. 
It was proposed by Ellion [16] and Zuber [Z] that 

the Reynolds number for bubble be defined using the 
bubble radius for a characteristic length, and the radial 
velocity of bubble boundary for a significant one. 

On this analogy it will be suggested to introduce 
further similarity criteria, modifying the usual ones 
with regard not only to bubbles but also to droplets, 
in a manner more appropriately than proposed 

Droplets and bubbles do not show necessarily 
uniform or monotonic size variation, the radial motion 
may be also of oscillatory character [6], in consequence 
of secondary effects superposed on the primary one. earlier [ 171. 

E,=E+ o-T;+ A 

( 1 

H.= HS o-T;+ A-Ap,V 
i 1 

for the enthalpy of a single disperse particle, the 
specific enthalpy per unit mass of the disperse phase 

having uniform temperature and size distribution takes 

the shape 

and, other things being equal, for the latent heat of 

vaporization 

is yielded, in which the upper signs relate to the 
droplet, and the lower ones to the bubble. 
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(11) 

(121 

(13) 

(14) 

(15) 

(16) 

and saturation pressure corresponding to its OWI 
temperature, what is defined by 

In case we apply the definitions 

Re 
* 

1= R (dRldt1 
pa 

V 

Ja, = 
ATc’ pi 
__e, 

rdf’ 

Pe 
* 

_ R(dRldt) 
--> 

a 

St, = LY 
c,p(dRldt) ’ 

pr =41 
a’ 

where the last one is ~changed, an opport~ity 
presents itself to express by means of them the radial 
velocity, the heat-transfer coefficient, and the tempera- 
ture difference between phases in various ways. Sub- 
stituting them into the equation (2), the heat balance 
turns to 

(17’) 

(17”) 

representing nothing else but BoSnjakovie’s conceptual 
model (2) in dimensionless formulation (17“) and its 
anaiogue for droplets (17’). 

Similarly to the heat balance, the pressure difference 
(5), too, can be transformed into a criterion equation, 
as follows. 

Applying for significant ones the radial acceleration 
of the phase interface instead of gravitation, on the 
one hand, and the pressure difference caused by the 
radial motion of the phase interface, on the other hand, 
we obtain the definitions 

(19) 

Ga R3(d2~/dtz) 
*= 

Y2 
-9 (20) 

(21) 

Having expressed the pressure difference and surface 
tension, as well as substituting them into the equation 
(5), we obtain the criterion equation of the difference 
between the pressure of single surrounded particles 

Eu,(Re,)’ Eu,Fr, 2 
~=-x) 

We*Ga, We, 
(22) 

based on Laplace and Kelvin’s theorem about the 
capillary superpressure. 

As can be seen, the Reynolds nurser is contained 
in the equations (17’), (17”), and (22). Uniting one of 
the formers with the latter by the Reynolds number, 
an opportunity offers itseif to produce the ~usse~t 
numbers 

~I 

(23’) 

d p’ Pe:’ 
i 

2 We, - “._. 
rip” Ja:f v Eu:‘Fr:’ ’ 

(23”) 

what can be regarded for the criterion equations of 
heat and mass transfer in case of disperse, two-phase, 
one-component media. 
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EQUATIONS CRITERES DU TRANSFERT DE CHALEUR ET DE MASSE 
A LA SURFACE DES GOUTTES ET DES BULLES 

Resume-Pour decrire le transfert de chaleur et de masse a l’interface dun milieu biphasique on 
elabore un systtme de criteres de similitude base sur les nombres d’Euler, de Froude, de Galilee, de Jakob, 
de Nusselt, de P&let. de Reynolds, de Stanton et de Wtber adaptes pour des gouttes et des bulles. On 
definit une notion de chaleur latente de capillaritt pour rendre compte des deviations causees par l’etat 

de dispersion des particules. 

KENNZAHLENGLEICHUNGEN FtjR DEN WARME- UND STOFFAUSTAUSCH 
AN DER OBERFLACHE VON TROPFEN UND DAMPFBLASEN 

Zusammenfassung- Zur allgemeinen Beschreibung des Warme- und Stoffaustausches an der Phasengrenz- 
fl%he zweiphasiger Stoffe wird ein aus den Kennzahlen Eu, Fr. Ga, Ja, Nu, Pe, Re, St und We 
bestehender Satz von ahnlichkeitskriterien erarbeitet. Zur Berucksichtigung der durch den dispersen 
Zustand der Partikel hervorgerufenen Abweichungen wird der Begriff einer latenten Kapillarwlrme 

definiert. 

KPHTEPHAJIbHME YPABHEHIDI TEIIJIO- II MACCOOEMEHA HA IIOBEPXHOCTH 
KAI-IEJIb II IIY3bIPbKOB IIAPA 

Arusoraqsrn - j$ra orrkicamin B o6rneM cnyvae Tenno- ri Maccoo6Meria Ha noaepxaocrn pa3nena 
ABfl$@3HbIX cpen npen.rromena cricreMa KpHrepuen no~o6aa, nxnro9aroman micna 3&repa, @pyna, 
Fan&men, %o6a, HyCCeJIbTa, i-kKJIe, P&HOAbACEi, CTiUIT0Iii.i H k&pa AJIR KZU-IWIb H v3bIPbKOB 

napa. PaCCMOTpeH TaKm.2 Y'IeT OTKJIOHeHHi, BbI3BaHHbIX AliCIIf$WibIM COCTOIIHAeM OAHOt U3 &Is. 


